
SCC Setup
- Ref:

https://www.bu.edu/tech/files/2017/06/201
7_summer-Tutorial-Intro-to-SCC.pdf

https://www.bu.edu/tech/files/2017/06/2017_summer-Tutorial-Intro-to-SCC.pdf
https://www.bu.edu/tech/files/2017/06/2017_summer-Tutorial-Intro-to-SCC.pdf

What is an SCC?
● SCC - Shared Computing Cluster - A Linux cluster

that composes of both Shared and Buy-in
components.

● The system currently includes over 12,000
shared CPU cores, over 16,000 Buy-in CPU cores,
300 GPU cores, and 12 petabytes of storage for
research data (approximately 92% of this is
Buy-in storage). (Source)

● Login Nodes - Mainly for Auth, file management,
job submission and monitoring

● Compute Nodes - Running intensive
computational jobs

https://www.bu.edu/tech/support/research/computing-resources/scc/

Why?
● Collaborate on shared data.
● Run code that exceeds workstation capability (RAM, Network, Disk).
● Run code that runs for long periods of time (days, weeks, months)
● GPUs 💸💸💸

Connecting to SCC
● Launch scc-ondemand.bu.edu (check if you have ‘/projectnb /dl4ds /’ under

files)

● Three ways to work on / connect to the SCC:
○ Through your browser
○ Through your terminal
○ Through your Local IDE (Recommended)

https://scc-ondemand.bu.edu/

SCC on your browser:
● Login Nodes – Click

on SCC1 or SCC2
● Will open the below

in a new tab:

Via VSCode (Recommended)
● Install: https://code.visualstudio.com/download
● Follow these steps to establish a remote connection to the SCC via SSH

(through your local VSCode):
○ https://www.bu.edu/tech/support/research/system-usage/scc-environment/editors-viewe

rs-and-ides/vscode/

● And install these extensions:
○ GitHub Copilot (Recommendation)
○ Black Formatter - To ensure consistent code formatting for your python files

(Recommendation)
○ Remote-SSH – Installed form previous step
○ Working with GitHub in VSCode

https://code.visualstudio.com/download
https://www.bu.edu/tech/support/research/system-usage/scc-environment/editors-viewers-and-ides/vscode/
https://www.bu.edu/tech/support/research/system-usage/scc-environment/editors-viewers-and-ides/vscode/
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=ms-python.black-formatter
https://code.visualstudio.com/docs/sourcecontrol/github

Important!!
● Everytime you connect via a login node, it will take you to what's called your “home”

directory.

● Check your present working directory: Type “pwd” – something like “/usr3/….” would be
displayed – this is your home directory.

● “du -sh .” - To check the size of your home directory – This should always be under
10G – or else, you may not be able to write/execute files.

○ Linux basics:
○ Here, command: du (Stands for disk usage), option: -s (stands for total size), -h (human readable format),

argument: “.” – refers to the current directory.

● What does this mean?
○ You SHOULD NOT install anything to your home directory
○ No pip installs, conda installs, etc to your home directory! – Next slide on how to ensure this

Important!!
● Change your working directory from your home directory to

“/projectnb/dl4ds/students/{your_bu_username}”

● Type “cd /projectnb/dl4ds/students/{your_bu_username}”

● In the “/projectnb” directory, there are no user-specific space limitations
→ Install all your packages here → Instructions - Next Slides…

Good to know commands
● To check your disk quota (keep this under 10GB):

○

● To check the project’s disk quota:
○

Types of Jobs
1. Interactive

a. Can type, view output,
open files, run commands

b. Follow the image to the
right to spin up an
interactive VS Code Server
on your browser

c. Make number of gpus to 0
to decrease wait time /
decrease the compute
capability of the gpu
requested (denoted by the
number 8.0)

Types of Jobs
1. Interactive

a. After a couple of minutes,
you should be seeing this

b. Click on Connect to VS Code

Interactive Session (VSCode Server)
● You’ll see a VSCode window open in your browser
● Use the terminal for the next steps

Modules on SCC
● What? - Collection of Software available to use
● Why? - For ease of use of different versions of standard packages
● How? -

○ Type “module avail“ – to see all available packages
○ “module load {module_load}” – to load the module

● Type “module load miniconda” – to load miniconda to your env → to
create separate virtual environments for your projects, where you can pip
install packages

● Follow the next slide after “module load miniconda”

Things to Note
● Your home directory only has 10GB of storage. Ideally, do not install anything there. Work in the /projectnb directory.
● Recommended steps to create a conda environment in SCC:

○ module load miniconda – may give you – (if you get a “WARNING: You do not have a .condarc file in your home directory “ message, run
setup_scc_condarc.sh see this link for more instructions:
https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/python-software/miniconda-modules/)

○ Check if “conda config --show pkgs_dirs” returns “/projectnb/…”. Else do the below:
■ conda config --add pkgs_dirs /projectnb/dl4ds/students/{Your_Folder_Name}/.conda

■ conda config --add envs_dirs /projectnb/dl4ds/students/{Your_Folder_Name}/.conda

■ conda config --show pkgs_dirs - To confirm

○ By doing the “config –add” commands, the .conda path with “/projectnb/…” should be on top in the ~/.condarc file. (You could just open this file
and add the paths there, skipping the above step, use cat ~/.condarc to view the file) – this is done, so that whenever you do a “pip install” inside
a conda env – the packages get installed into to this directory.

○ cd /projectnb/l4ds/students/{Your_Folder_Name}

○ Create an environment using, “conda create -n dl4ds python=3.9 ”
○ conda activate dl4ds

○ You can then install packages using conda install…, pip install…, etc. Ref:
https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/python-installs/conda/

○ Try installing a package (example: pip install numpy), and try importing it:
import numpy
print (numpy. __version__)

● If you hit your home quota limit follow this:
https://www.bu.edu/tech/support/research/system-usage/using-file-system/storage-quotas/

https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/python-software/miniconda-modules/
https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/python-installs/conda/
https://www.bu.edu/tech/support/research/system-usage/using-file-system/storage-quotas/

Types of Jobs
1. Interactive:

a. For setting up code, debugging etc
b. Once your session ends / gets interrupted, all runs get

stopped.

2. Batch (Non-Interactive)

Assuming you’re either on a VS Code server on your
browser, or on your local IDE remotely connected to SCC:

a. Use it for long training runs, or to start multiple runs

b. Create a bash script (like the image to the right) – name it
example.sh

c. To submit the job: run “qsub example.sh” – To view your job:
“qstat -u {your_usernmae}”

d. Your job is sent to the scheduler, who will put your job onto a
queue, and then when resources free up – it will start running
your script

e. Running the qsub command is all that you need to do, the run
will take place even if you are offline/away. – You will start
seeing the output logs in the -O directory you define in the
script when the job starts running.

View the queue
1. Type “qstat -u

{your_username}”

2. job-ID - Unique name for your job
3. prior - Priority set by the Job scheduler
4. name - You can set names to your job by

passing the -N option to the qsub command
5. state - The state of the job: (r) –

running; (qw) – waiting to run; (hqw) – on
hold, waiting to run; (Eqw) – job in error
state; (s) – suspended; (t) – transfering.

6. queue - The queue name and the node ID on
which the job is running.

7. slots - number of slots the job
requested. (number of CPU cores)

8. ja-task-ID - task id if submitted a job
array (job array – submitting multiple
jobs under a single job submission where
each job has its own task ID, allowing the
system to manage and execute each task
individually).

SCC Resources
Take a look at the SCC cheat sheet here:

https://dl4ds.github.io/sp2025/materials/

● Use either the Interactive Sessions (VSCode Server), or SSH into SCC
via your local VSCode IDE to work on your code.

https://dl4ds.github.io/fa2024/materials/

SCC - Requesting an Interactive Job (via Terminal)
● Ideal for debugging and you need GPUs

● Once you’ve logged in, and are on your terminal – you are now using a login node.

● To request for a compute node – “qrsh -pe omp 4 -P dl4ds -l gpus=1” – to see all the args that can be passed and what they mean, see
https://dl4ds.github.io/sp2025/materials/

● Once the request goes through, you’ll be taken to a compute node. Note that you’ll be taken to your home directory. So do a “cd
/projectnb/ds542/students/{your_username}” or “File → Open Folder…” in VSCode and enter this path.

● You can create your directories under the ”students/{your_username}” directory – again make sure to create files, directories, etc
under “/projectnb”

● Try “nvidia-smi” – to see the GPU assigned and to monitor GPU usage. – You may be assigned specific GPU ids, and notice that some of
the GPU cores are already being used. There's no need for additional configuration—SCC automatically sets the
CUDA_VISIBLE_DEVICES environment variable for you. You can proceed with your code as normal.

https://dl4ds.github.io/sp2025/materials/

